Nano-engineering can produce substances with unique properties that will give renewable energy a boost
納米工程技術(shù)能制造出具有獨(dú)特性質(zhì)的物質(zhì),這將促進(jìn)可再生能源的開(kāi)發(fā)
New materials for renewable energy:The power of being made very small
Big improvements in the production of energy, especially from renewable sources, are expected over the coming years. Safer nuclear-power stations, highly efficient solar cells and the ability to extract more energy from the wind and the sea are among the things promised. But important breakthroughs will be needed for these advances to happen, mostly because they require extraordinary new materials.
The way researchers will construct these materials is now becoming clear. They will engineer them at the nanoscale, where things are measured in billionths of a metre. At such a small size materials can have unique properties. And sometimes these properties can be used to provide desirable features, especially when substances are formed into a composite structure that combines a number of abilities. A series of recent developments shows how great that potential might be.
Grand designs
Researchers have already become much better at understanding how the structure of new nano-engineered materials will behave, although the process remains largely one of trial and error because different samples have to be repeatedly manufactured and tested. Michael Demkowicz of the Massachusetts Institute of Technology is developing a model that he hopes will address the problem from a different direction: specifying a set of desired properties and then trying to predict the nanostructures needed to deliver them.
Dr Demkowicz is working with a team based at the Los Alamos National Laboratory, one of a number of groups being funded under a new $777m five-year programme by the American government to accelerate research into energy technologies. The material Dr Demkowicz is looking for will be good at resisting damage from radiation. It could be used instead of stainless steel to line a nuclear reactor, which would extend the reactor's working life and allow it to be operated more efficiently by burning a higher percentage of nuclear fuel. At present, says Dr Demkowicz, reactors burn only around 1% of their fuel, so even a modest increase in fuel burn would leave less radioactive waste.
The reason why the linings of nuclear reactors degrade is that metals can become brittle and weak when they are exposed to radiation. This weakness is caused by defects forming in their crystal-lattice structure, which in turn are caused by high-energy particles such as neutrons bumping into individual atoms and knocking them out of place. When these displaced atoms collide with other atoms, the damage spreads. The result is holes, or "vacancies", and "interstitials", where additional atoms have squeezed into the structure.
Dr Demkowicz says it is possible to design nanocomposites with a structure that resists radiation damage. This is because they can be made to exhibit a sort of healing effect in the areas between their different layers. The thinner these layers are, the more important these interfaces become because they make up more of the total volume of the material. Depending on how the nanocomposites are constructed, both the vacancies and the interstitials get trapped at the interfaces. This means there is a greater chance of their meeting one another, allowing an extra atom to fill a hole and restore the crystal structure. In some conditions the effect can appear to show no radiation damage at all, he adds.
The ideal nanocomposite would not only resist radiation damage. It would also not itself become radioactive by absorbing neutrons. Dr Demkowicz has used his modelling techniques to come up with some candidates; iron-based ones for fission reactors and tungsten-based ones for those that may one day use nuclear fusion. It could still take years before such materials are approved for use, but the modelling methods will greatly speed up the process.
Across the spectrum
Nano-engineered materials will also play an important role in a more efficient generation of solar cells, according to an exhibition by researchers at Imperial College, London, called "A Quantum of Sol", which opened this week at the Royal Society Summer Science Exhibition, also in London. Again, the desired effects are obtained by using combinations of material produced at extremely small sizes. In this case, they are used to make "multi-junction" solar cells, in which each layer captures energy from a particular colour in the spectrum of sunlight. Overall, this is more efficient than a conventional solar cell which converts energy from only part of the spectrum.
Whereas conventional solar cells might turn 20% or so of the energy in sunlight into electricity, multi-junction solar cells already have an efficiency of just over 40% and within a decade that could reach 50%, predicts Ned Ekins-Daukes, a researcher at Imperial. Until nano-engineering costs come down with economies of scale, multi-junction solar cells will remain expensive. The researchers expect that electricity-generation costs can still be cut in the meantime by using mirrors to concentrate sunlight on the cells.
Through the glass
Solar cells could also be incorporated into the structure of buildings, including windows. Researchers at the Fraunhofer Institute for Mechanics of Materials are looking for suitable transparent materials to make them. They too are using computer models to explore atomic structures and then to simulate how electrons will behave in them. With the right combination of conductive and transparent material, says Wolfgang K?rner, from the German institute, it should be possible to produce completely see-through electronics.
The nanostructure of composites can also provide great mechanical strength in relatively light materials. Composites such as fibreglass and carbon fibre bonded in a plastic resin are already widely used to replace metal in making, for instance, cars and aircraft. But by controlling the direction and the tension of the fibres during their construction it is possible to produce a morphing composite, which adjusts its shape under certain conditions. The change can be instigated by an external control or it can be automatic, for instance in response to variations in heat, pressure or velocity.
These morphing composites could be used to produce more efficient turbine blades in wind and tidal generators, a seminar at Bristol University's Advanced Composites Centre for Innovation and Science was told this week. A bistable composite capable of altering its aerodynamic profile rapidly when wind and current conditions changed would help to remove unwanted stresses in the blades. That would increase the efficiency of the blades and extend the working life of the generator systems they power, says Stephen Hallett, a member of the Bristol team. Morphing composites would mean, for instance, that tidal generators could be made smaller and would last longer, which would make them more viable commercially. In this way many tiny changes in the science of materials could generate a big future for renewable energy.
利用納米新材料促進(jìn)可再生能源的開(kāi)發(fā):納米的力量
在未來(lái)的幾年里,能源生產(chǎn)有望得到大幅改進(jìn),尤其是來(lái)自可再生能源的生產(chǎn)。其中包括更加安全的核電站、高效率的太陽(yáng)能電池以及對(duì)風(fēng)能和潮汐的利用。但是這些進(jìn)步如果要得以實(shí)現(xiàn)的話,需要有一些重要的突破,主要是因?yàn)檫@些進(jìn)步需要極其新穎的材料。
研究者們構(gòu)造這些材料的方法目前變得越來(lái)越清晰。他們將在納米尺度上加工這些材料,在這種尺度上,測(cè)量物質(zhì)是按照10億分之米來(lái)進(jìn)行的。材料處于這樣小的尺寸的時(shí)候會(huì)有一些獨(dú)特的性質(zhì)。有時(shí)候,這些性質(zhì)能提供一些有用的材料特性,尤其是當(dāng)物質(zhì)形成復(fù)合結(jié)構(gòu)的時(shí)候,這種復(fù)合結(jié)構(gòu)把許多性能結(jié)合在一起。目前的一系列進(jìn)展表明這種技術(shù)前途極其巨大。
宏偉設(shè)計(jì)
研究者們對(duì)新型納米材料結(jié)構(gòu)的行為方式已經(jīng)有了更好的了解,盡管他們對(duì)其中的過(guò)程仍然處于摸索階段,這是因?yàn)椴煌臉悠繁仨毞磸?fù)地重新制備和測(cè)試。來(lái)自麻省理工學(xué)院(Massachusetts Institute of Technology)的Michael Demkowicz目前正在開(kāi)發(fā)一種模型,他希望這種模型能從不同的方向來(lái)解決上述問(wèn)題:具體列出一些希望得到的性質(zhì),然后嘗試預(yù)測(cè)出能提供這些性質(zhì)的納米結(jié)構(gòu)。
Demkowicz博士正和洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室(Los Alamos National Laboratory)的一個(gè)研究小組一起工作。美國(guó)政府為了加快新能源技術(shù)的研究,新設(shè)立了一個(gè)為期5年、資助金額為7.77億美元的研究項(xiàng)目,許多科研小組都在這個(gè)項(xiàng)目資助下開(kāi)展工作。
Demkowicz博士所在的研究小組就是其中之一。Demkowicz正在尋找的材料在抗輻射方面有良好的性能。這種材料可以替代核反應(yīng)堆的不銹鋼襯里,這將會(huì)延長(zhǎng)反應(yīng)堆的工作壽命,這種材料還能提高核燃料的燃燒效率,從而使核反應(yīng)堆的效率提高。Demkowicz說(shuō),目前核反應(yīng)堆僅僅只燃燒1%的核燃料,因此,即使只是稍微提高核燃料的燃燒效率,這也會(huì)減少放射性核廢料。
核反應(yīng)堆襯里為什么損害的原因在于,當(dāng)金屬暴露于輻射之下的時(shí)候,它們會(huì)變得脆弱。金屬的這種變?nèi)跏怯捎谒鼈兊木Ц窠Y(jié)構(gòu)中形成了缺陷,這種缺陷是由于高能粒子,比如中子撞擊到金屬的單個(gè)原子,從而把它們從晶格中撞出。當(dāng)這些"錯(cuò)位"的原子與其它原子碰撞到一起的時(shí)候,這種損害就會(huì)傳播開(kāi)。這種結(jié)果導(dǎo)致了空穴(或者"空位")以及"間隙",在這里其它的原子就嵌入進(jìn)來(lái)。
Demkowicz說(shuō),設(shè)計(jì)出能抵抗輻射的納米復(fù)合材料是可能的。這是因?yàn)椋@種材料可以在不同層之間的區(qū)域里表現(xiàn)出一種"修復(fù)"效果。這些層越薄,這些層間界面就越重要,這是因?yàn)閷娱g界面構(gòu)成了整個(gè)材料體積的大部分。取決于納米復(fù)合材料的構(gòu)成情況,"空位"和"間隙"都能在界面被俘獲。這就意味著,它們碰到一起的機(jī)會(huì)很大,這就可以讓另外一個(gè)額外的原子去填充空穴,從而恢復(fù)晶體結(jié)構(gòu)。Demkowicz補(bǔ)充說(shuō),在某些條件下,這樣的結(jié)果看起來(lái)就好像沒(méi)有任何輻射損害發(fā)生一樣。
理想的納米復(fù)合材料應(yīng)該不僅僅能抵抗輻射損害。它應(yīng)該在吸收了中子之后,自身也不變成具有輻射性質(zhì)的物質(zhì)。Demkowicz博士已經(jīng)利用他的模型技術(shù)設(shè)計(jì)出了幾種候選材料;基于鐵的納米復(fù)合材料可能用于核裂變反應(yīng)堆,基于鎢的納米復(fù)合材料可能用于核聚變反應(yīng)堆。這些材料的真正投入使用可能還需要好幾年的時(shí)間,但是這種模型方法將會(huì)極大地加快這種過(guò)程。
利用所有太陽(yáng)能
根據(jù)倫敦帝國(guó)理工學(xué)院(Imperial College, London)研究者們的一個(gè)展覽,納米材料也將會(huì)在高效率太陽(yáng)能電池中扮演重要的角色,這個(gè)展覽叫做"太陽(yáng)量子",本周在"皇家學(xué)會(huì)夏季科技展"(Royal Society Summer Science Exhibition)上展出,后者也在倫敦舉辦。研究者們也是通過(guò)把極小尺寸的材料組合起來(lái),得到了他們期望的結(jié)果。在這里,納米復(fù)合技術(shù)用于制造"多節(jié)點(diǎn)"太陽(yáng)能電池,在這種電池中,每一層捕獲太陽(yáng)光譜中某種特定的顏色的能量?偲饋(lái),這比傳統(tǒng)太陽(yáng)能電池的效率要更加高,因?yàn)閭鹘y(tǒng)太陽(yáng)能電池僅僅只轉(zhuǎn)化太陽(yáng)光光譜中的一部分能量。
傳統(tǒng)的太陽(yáng)能電池能把約20%的太陽(yáng)光的能量轉(zhuǎn)化為電能,不過(guò)多節(jié)點(diǎn)(multi-junction)太陽(yáng)能電池的效率已經(jīng)超過(guò)了40%,Ned Ekins-Daukes(倫敦帝國(guó)理工學(xué)院的一名研究者)預(yù)測(cè),在十年內(nèi),其效率將會(huì)達(dá)到50%.除非納米材料因規(guī)模經(jīng)濟(jì)而降低成本,多節(jié)點(diǎn)太陽(yáng)能電池將會(huì)仍然很昂貴。研究者們認(rèn)為,使用玻璃鏡把陽(yáng)光聚集在電池上也能降低太陽(yáng)能電池產(chǎn)電的成本。
透過(guò)玻璃
太陽(yáng)能電池也可以嵌入到建筑物種,包括窗戶。來(lái)自德國(guó)弗勞恩霍夫材料力學(xué)研究所(Fraunhofer Institute for Mechanics of Materials)的研究者們正在尋求合適的透明材料來(lái)制備這種太陽(yáng)能電池。他們也使用計(jì)算機(jī)模型來(lái)研究原子結(jié)構(gòu),然后模擬電子在原子中的行為。來(lái)自該研究所的Wolfgang K?rner說(shuō),通過(guò)導(dǎo)電材料和透明材料合適的組合應(yīng)該能制備出完全透明的太陽(yáng)能電池。
對(duì)于質(zhì)量相對(duì)較輕的材料,復(fù)合材料的納米材料也能提供很好的機(jī)械強(qiáng)度。結(jié)合在塑料樹(shù)脂中的玻璃纖維和碳纖維復(fù)合材料已經(jīng)廣泛用于汽車(chē)和飛機(jī)的生產(chǎn)中,它們?nèi)〈私饘俨牧稀A硗,在制造過(guò)程中,通過(guò)控制纖維的方向和張力,有可能生產(chǎn)出變型復(fù)合材料(morphing composite),這種材料在某些特定的條件下能調(diào)整其形狀。這種變化可以來(lái)自于外部的控制,也可以是自動(dòng)的,比如在對(duì)熱、壓力或者速度的變化做出響應(yīng)的時(shí)候。
本周在布里斯托爾大學(xué)創(chuàng)新與科學(xué)高級(jí)復(fù)合材料中心(Bristol University's Advanced Composites Centre for Innovation and Science)的研討會(huì)上,有報(bào)道稱(chēng),這些變型復(fù)合材料能用于生產(chǎn)效率更高的風(fēng)能和潮汐渦輪機(jī)片。當(dāng)風(fēng)和水流條件改變的時(shí)候,雙穩(wěn)復(fù)合材料能迅速改變它的空氣動(dòng)力學(xué)形式,這有利于消除渦輪機(jī)片上多余的壓力。來(lái)自布里斯托爾大學(xué)的Stephen Hallett說(shuō),這能提高渦輪機(jī)片的效率,還能延長(zhǎng)發(fā)電機(jī)系統(tǒng)(由渦輪機(jī)提供能量)的工作壽命。變型復(fù)合材料將意味著潮汐發(fā)電機(jī)可以制造的更小巧,而且更耐用,這使其更有商業(yè)前景。材料科學(xué)領(lǐng)域的這類(lèi)許多微小的變化能為可再生能源帶來(lái)美好的未來(lái)。
Vocabulary:
Unique:獨(dú)特的
Renewable:可再生的
Boost:增進(jìn);提高
Breakthrough: 突破
Desirable: 可取的;值得的
Specify:詳述;具體說(shuō)明
Radiation:輻射
Lining:襯里
Brittle:脆的
Defect:缺陷
Neutron:中子
Fission:聚合
Tungsten:(化學(xué)元素)鎢
Exhibition:展覽
Convert:轉(zhuǎn)化
Spectrum:光譜
Incorporate:嵌入
Transparent:透明的
Simulate:模擬
Mechanical:機(jī)械的
Adjust:調(diào)整
Instigate:激起
Velocity:速度
Aerodynamic:空氣動(dòng)力學(xué)的